Excerpt:
Petabytes allow us to say: "Correlation is enough." We can stop looking for models. We can analyze the data without hypotheses about what it might show. We can throw the numbers into the biggest computing clusters the world has ever seen and let statistical algorithms find patterns where science cannot.Comment: It is going to be a long time before the poor nations of Africa have this kind of computing power! JAD
The best practical example of this is the shotgun gene sequencing by J. Craig Venter. Enabled by high-speed sequencers and supercomputers that statistically analyze the data they produce, Venter went from sequencing individual organisms to sequencing entire ecosystems. In 2003, he started sequencing much of the ocean, retracing the voyage of Captain Cook. And in 2005 he started sequencing the air. In the process, he discovered thousands of previously unknown species of bacteria and other life-forms.
If the words "discover a new species" call to mind Darwin and drawings of finches, you may be stuck in the old way of doing science. Venter can tell you almost nothing about the species he found. He doesn't know what they look like, how they live, or much of anything else about their morphology. He doesn't even have their entire genome. All he has is a statistical blip — a unique sequence that, being unlike any other sequence in the database, must represent a new species.
This sequence may correlate with other sequences that resemble those of species we do know more about. In that case, Venter can make some guesses about the animals — that they convert sunlight into energy in a particular way, or that they descended from a common ancestor. But besides that, he has no better model of this species than Google has of your MySpace page. It's just data. By analyzing it with Google-quality computing resources, though, Venter has advanced biology more than anyone else of his generation.
This kind of thinking is poised to go mainstream. In February, the National Science Foundation announced the Cluster Exploratory, a program that funds research designed to run on a large-scale distributed computing platform developed by Google and IBM in conjunction with six pilot universities. The cluster will consist of 1,600 processors, several terabytes of memory, and hundreds of terabytes of storage, along with the software, including IBM's Tivoli and open source versions of Google File System and MapReduce.1 Early CluE projects will include simulations of the brain and the nervous system and other biological research that lies somewhere between wetware and software.
Learning to use a "computer" of this scale may be challenging. But the opportunity is great: The new availability of huge amounts of data, along with the statistical tools to crunch these numbers, offers a whole new way of understanding the world. Correlation supersedes causation, and science can advance even without coherent models, unified theories, or really any mechanistic explanation at all.
No comments:
Post a Comment